
 Cross Domain Composition of Web Service
Workflows using a Provenance Ontology with an

automated Re-planning
B.Meenakshi Sundaram Dr. D. Manimegalai

Asst. Proffessor Prof & Head
Department of Computer Applications Department of Information Technology

School of Computer Science and Technology National College of Engineering
Karunya University, Coimbatore, India. Kovilpatti, India.

Abstract-Workflow is a sequence of processes through which
a work request completes from inception till end by using
multiple service providers across domain boundaries.
Workflow Web services are interoperable and provides an
interface for remote clients to get information or to get
workflow templates. A domain specific and domain
independent OWL ontology (PROV) to represent workflow
specifications to trace workflow execution is developed. To
complete a business transaction requests, there arise a need of
combining multiple workflow web services to form a
composition with the help of multi-agent system. In this
paper, a conceptual model of provenance ontology (PROV)
for a workflow with the help of multihoming agent based fault
tolerant cross domain composition system is proposed. A few
recently proposed Composing web services enacted by
autonomous agents through agent-centric contract net
protocol, Web Service Composition using Provenance and
Automatic service composition using Partially Observable
Markov Decision Processes and provenance have been studied
thoroughly. This paper presents a contemporary way to
automatically compose web service workflow that uses active
transactional component web services. The web services
workflows are described with open provenance workflow
ontology (OPWO). The PROV-O can be used to describe
both component and web service workflows. In addition it
also describes the dependent service flow to ease the
automated process. The Provenance ontology gives workflow
execution traces as well as more abstract reusable workflows.
Workflow transactions can also use provenance information
to understand user’s query. We have also implemented a
workflow engine that runs all possible workflow use-cases.
Here we analyze using our ontology and some workflow
instances with a reasoning agent to automatically compose the
workflow that fulfills given requirements. The outcome from
the derived and combined workflow instances can be executed
using our workflow engine.

Keywords: Provenance, Web service workflow composition,
Multihoming Agent fault tolerant composition etc.

1. INTRODUCTION

The Business Artifact is a digital representation of a
business model. Artifact-centric Business Process Model is
comprised of process, data and entities. A web service is
the business process components communicate through
common messaging structures which is strength of
interoperability of distributed component systems. The
proposals like BPEL4WS, XLANG and WSFL have been
presented for describing workflows of composed web

services in relatively stable environments. We propose an
automatic workflow composer with re-planning facility.

Web services workflow is a well-defined set of abstract
process definition to each process whose output depends on
other previous web services. Composed workflows
combine web services from several individual web services
to one combined workflow, which may not show all
internal operations. Because of most of the business logics
execution are done in background. Composed web service
workflow includes dependencies between operations inside
the web service and between component web services.
Transactional workflow guarantees that all services in the
workflow either suspend or fail. Concurrent and long-term
transactions must be handled without interruptions.
Currently, most of the web service workflows are
developed and maintained manually. [4]

 The Semantic Web is a Web as a whole can be made
more intelligent and perhaps even intuitive about how to
serve a user's needs. [1] OWL-S enables to create the
ontology for a domain and the instantiation of these
ontologies in the description of web service specification.
In this paper, we are interested in automated reasoning.

Generally the composition of web service workflows
needs a reasoning engine (planner), a set of inferences, and
semantic information about the services and workflows.
Provenance ontology (PTWO) enable automated semantic
reasoner.

With dynamic automated composing of web services,
there are more dependencies between component services.
We describe here a software agent that does the workflow
planning based on the semantic requirement information.
The agent offers a single interface to multiple services.
Changes in component services cause a re-planning.

2. RELATED WORK

Most research concerning web service workflows has
been about manual or semi-automated composition of
services to provide higher-level services [2].

Automatic composition of web services using situation
calculus, pi-calculus, and process algebra has been
presented in the earlier researches [3]. They have
transformed a significant portion of semantics to first-order
logic and also to Petri nets. Petri nets have been used to
simulate and verify the workflows. Their work proves that
translation of workflows to Petri nets is possible, and that

B.Meenakshi Sundaram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2750-2753

www.ijcsit.com 2750

meaningful deduction can be made. We extend their
research by combining separate workflow usecases using a
semantic agent to one automatically generated workflow.

Self-Serv [4] is a peer-to-peer (P2P) approach to web
service workflow composition. The overall workflow is
managed without a central planner or coordinator. Instead,
Self-Serv has coordinating messages between state
coordinators. SWORD [5] is a rule-based developer toolkit
for web service composition. It generates a plan based on
input/output conditions specified for all component
services. SWORD uses its own web service platform.
SCET [9] is a tool for automatic off-line composition and
execution of web service workflows. It generates Perl
execution code for WSFL (Web Services Flow Language
from IBM) workflow specifications.
The significance of provenance information in SOA has
been progressively perceived and various methodologies
have been created to give a provenance system to catch
such information. Tsai et al. [14], [15] provide a dynamic
framework for classification and collection of provenance
data in SOA systems, their emphasis is fundamentally on
security, unwavering quality and honesty of information
directed through a SOA framework instead of the structure
of the provenance information gathered. Michlmayr et al.
[16] present an approach for capturing service runtime
events, but their work again focuses on security issues such
as data integrity and access control mechanisms as its
foundation. Rajbhandari et al. [17] propose an approach for
recording provenance in SOAs, including a scalability
analysis of the effect of increases in the provenance data
collection. Their provenance model for Web service
architectures focuses on capturing the provenance data and
representing them in a standard format, and on querying
and reasoning over the provenance of process instances.

3. ONTOLOGY
By ontology means a conceptual specialization and their

relations in a machine-understandable way. The
Provenance ontology to provide the foundation to
implement provenance applications in different domains
that can represent, exchange, and integrate provenance
information generated in different systems and under
different contexts.
3.1 PROV ontology

PROV-O [11]] accommodates all different uses of
provenance. Distinct individuals may have alternate points
of view on provenance, and subsequently diverse sorts of
data may be caught in provenance records. One viewpoint
(prov: Agent) may concentrate on agent focused
provenance, that is, the thing that individuals or
associations were included in creating or controlling the
data being referred to. A second viewpoint (prov: Entity)
may concentrate on object focused provenance, by
following the starting points of bits of a report to different
archives. A third viewpoint (prov: Activity) one may take
is on process focused provenance, catching the moves and
steps made to produce the data being referred to. Since our
work is based on workflow, we consider the third
viewpoint of PROV-O to compose the process workflow.

Table 1. PROV-O Task types
Task type Description

prov:startedAtTime
when an activity is deemed to have
started

prov:used start of using an entity by an activity

prov:wasGeneratedBy
Completion of production of a new
entity by an activity.

prov:wasInformedBy exchange of an entity by two activities

prov:wasDerivedFrom
derivation is a transformation of an
entity into another

prov:endedAtTime
when a activity is considered to have
finished

3.2 P-Plan
P-plan[11] is a PROV extension helps to specify the
planned execution activities. OPMW extends PROV, OPM
and P-Plan to get the process view provenance.

Fig. 1. OPMW as an extension of OPM, PROV and P-plan

[11]

Table 2. P-Plan Task types
Task type Description

p-plan:Steps
Represents the planned execution
activity.

p-plan:correspondsToStep
links a p-plan:Activity to its planned
p-plan:Step

p-plan:isPrecededBy
links a p-plan:Step to the p-plan:Step
preceeding it.

p-plan:isStepOfPlan links a p-plan:Step to the p-plan:Plan

p-plan:isVariableOfPlan Variable to the p-plan:Plan

Fig 2: Sub-plan representation in P-PLAN [11]

The workflow experts draw the p-Plan activities and a sub-
plan to compose the web services.

B.Meenakshi Sundaram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2750-2753

www.ijcsit.com 2751

Planner

Inferenc

Executable workflow

UDDI Service
Component
Registry

Component
Workflow
Registry

User
Requirements

4. PROPOSED WORK
The workflow web services are identified for a We have
implemented a workflow engine that reads and executes a
Transactional ontology-based web service workflow
instance.

Error! Not a valid bookmark self-reference.3. presents

the overall system architecture.

The core modules are Workflow Manager and

Workflow library, Transact Ontology, PROV Ontology.
Workflow Manager is responsible for loading, creating,
saving and retrieving component workflow instances.
Transact Ontology module implements reading, writing,
updating and validating a workflow instance. Workflow
Engine module holds the workflow execution logic. WS
Planner module uses a workflow instance to send messages
to web services as instructed by the workflow engine.

The implementation uses Java Web Service Developer
Pack [13] for web services. Protégé with Jena for ontology
reading and writing.

In our experience, the workflow instance specifications
using PROV ontology offers the following benefits:

 Tasks and other concepts can be kept in an order.
 Inferences are written in the ontology, instead of

being in parser code.
 Integration of workflow ontology concepts and

PROV ontology for composition.
 Class-based specification is easy to map to

implementation classes.

Our main motivation for developing an ontology-based
workflow engine was to enable sharing and combining
workflows using automated re-planning facility.

5. PLANNING AGENT

Planner’s role is to plan a workflow that accomplishes
the user needs. The workflow is created at run-time, based
on following:

 Workflow library information about web services
 Workflow instances for component web services
 Starting/Ending Workflow instance

 User input parameters
 Inferences
 Workflow composition
Workflow instances are described using our

Transactional ontology and Provenance ontology. Using
ontology enables us to also reason about the transaction
models. We use Provenance profile ontology to describe
the common meaning of services.

We have proposed [8] a separate Workflow Manager
that stores explicitly registered workflow instances in the
same sense as UDDI registry stores web service interface
descriptions. Workflow Manager enables planning agent to
select services based on their workflow and transaction
models. The planning agent can automatically make the
composition based on the stored workflows.

Fig. 4. Planning agent input and output

Figure 4 presents the inputs and output of the planning

agent.

6. COMPOSITION
Four workflow specification components are needed to

be able to compose the workflow [10].
 Tasks in sequence
 Transactional requirements in order
 Directed Data flow
 Executable composition structure

The tasks specify what component services are used in
what sequence. Modular design of tasks helps reuse them
in composed master workflow. Transactional requirements
in order are described for all web services in our ontology.
Data flow and executable structure are objectives of the
composition.

Executable structure (composite workflow) is composed
from the master workflow and the component workflows.
First, Transaction component Service Registry is used to
find the correct services. Second, their workflows are read
from the Provenace Workflow Registry. Third, ordering
constraints in the master workflow are added to the

PROV ontology

Workflow Manager Workflow library

User Query
Interface

Re-planner

UDDI
component

web

Compo
sition
Engine

B.Meenakshi Sundaram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2750-2753

www.ijcsit.com 2752

knowledge base. Fourth, some tasks are added to the
workflow. After this step, workflow has all tasks and
control links. Finally, data links may be added.

Order Tasks will create a partial ordering for the tasks in
component workflows. It is not necessary to order all tasks
separately, as the component workflows already have
ordered some tasks. Data dependencies specified in the
master workflow need to be used in planning as well.

Add Tasks phase adds Fork/Join control links around
sets of concurrent tasks. If the master workflow specifies
that component workflows are executed in sequence, a Go
control link is added between their tasks.

Our workflow engine implementation supports named
data links between tasks. By default, all data links are
internal to component workflows only. Master workflow
can specify some data links to be public and usable by
other component workflows. In practice data links often
require filters or transformations. [10] There is some
research on ontology version control and ontology
transformations that could be useful.

7. CONCLUSIONS

We have implemented a web service workflow
composition engine that uses Provenance ontology
languages to select and execute workflows. This paper
presents a way to use provenance ontology-based
reasoning to automatically combine component workflow
instances. Provenance helps in many ways than typical
ontology process model, which lets us to use inference
engines. In future, we plan to develop the composition
framework for cross enterprise workflow integration.

REFERENCES

[1] Tim Berners-Lee, James Hendler, and Ora Lassila, “The semantic
web”, Scientific American, May 2001.

[2] Joe Kopena and William C.Regli, “DAMLJessKB: A Tool for
Reasoning with the Semantic Web”.
http://edge.mcs.drexel.edu/assemblies/software/damljesskb/articles/
DAMLJessKB-2002.pdf

[3] Narayanan, S. and McIlraith, S., "Simulation, Verification and
Automated Composition of Web Services", Proceedings of the
Eleventh International World Wide Web Conference, 2002.

[4] Boualem Benatallah. and Marlon Dumas, "The Self-Serv
Environment for Web Services Composition", IEEE Internet
Computing, Jan-Feb, 2003.

[5] Lasse Pajunen, Jarmo Korhonen, Juha Puustjärvi. “Adaptive Web
Transactions: An Approach for Achieving the Atomicity of
Composed Web Services”, Proceedings of EuroWeb conference,
2002.

[6] HP Labs, Jena Semantic Web toolkit.
http://www.hpl.hp.com/semweb/jena.htm

[7] Shankar R. P. and Armando F. “SWORD: A Developer Toolkit for
Web Service Composition”, Proceedings of the Eleventh
International World Wide Web Conference, 2002.
http://www2002.org/CDROM/alternate/786/

[8] Jarmo Korhonen, Lasse Pajunen, Juha Puustjärvi, “Using
Transactional Workflow Ontology in Agent Cooperation”, AIM
Workshop, First EurAsian Conference on Advances in ICT, 2002.
http://www.iki.fi/jako/papers/twfo.pdf

[9] Ruoyan, Z., Arpinar, B., Aleman-Meza, B., Automatic Composition
of Semantic Web Services, The 2003 International Conference on
Web Services (ICWS'03), June 2003.
http://lsdis.cs.uga.edu/lib/download/composition_short_icws.doc

[10] Juha Puustjärvi, Henri Tirri, Jari Veijalainen. “Reusability and
modularity in transactional workflows”. Information Systems, Vol
22, No 2/3, pp 101-120, 1997

[11] DAML-S:Semantic Markup for Web Services. Proceedings of the
International Semantic Web Working Symposium (SWWS), 2001.
http://www.daml.org/services/SWWS.pdf

[12] BPEL4WS–Business process execution language for web services,
http://www.ibm.com/developerworks/webservices/library/ws-bpel/

[13] JWSDP – Java Web Services Developer Pack.
http://java.sun.com/webservices/webservicespack.html

[14] T. Wei-Tek, W. Xiao, Z. Dawei, P. Ray, C. Yinong, and C. Jen-Yao,
“A New SOA Data-Provenance Framework,” in Proceedings of the
Eighth International Symposium on Autonomous Decentralized
Systems, ser. ISADS ’07. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 105–112. [Online]. Available:
http://dx.doi.org/10.1109/ISADS.2007.5

[15] T. Wei-Tek, W. Xiao, C. Yinong, P. A. Raymond, C. Jen-Yao, and
Z. Dawei, “Data provenance in SOA: security, reliability, and
integrity,” Service Oriented Computing and Applications, vol. 1, no.
4, pp. 223– 247, 2007.

[16] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Service
Prov enance in QoS-Aware Web Service Runtimes,” in Proceedings
of the 2009 IEEE International Conference on Web Services,
[Online]. Available: http://dx.doi.org/10.1109/ICWS.2009.32

[17] S. Rajbhandari and D. Walker, “Incorporating Provenance in Service
Oriented Architecture,” in Proceedings of the International
Conference on Next Generation Web Services Practices, ser.
NWESP ’06. Washington, DC, USA: IEEE Computer Society, 2006,
pp. 33–40. [Online]. Available:
http://dx.doi.org/10.1109/NWESP.2006.18

B.Meenakshi Sundaram et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2750-2753

www.ijcsit.com 2753

